PROOF FOR THE ORIGIN OF THE BRANCH HYDROXYMETHYL CARBON OF D-APIOSE FROM CARBON 3 OF D-GLUCURONIC ACID

W.J. KELLEHER, D. BARON, R. ORTMANN and H. GRISEBACH

School of Pharmacy, University of Connecticut, Storrs, Conn., USA

and

Lehrstuhl für Biochemie der Pflanzen am Biologischen Institut II der Universität Freiburg i.Br., Germany

Received 4 March 1972

1. Introduction

The results of an earlier experiment in which D-3. 4-14C₂-glucose was fed to shoots of young parsley plants proved that C-3' of apiose (3-C-hydroxymethyl-D-erythro-furanose) must originate from either C-3 or C4 of glucose [1]. Beck and Kandler [2] determined the distribution of radioactivity on the carbon atoms of apiose, xylose and glucose isolated from Lemna plants which had been grown in the presence of D-1-¹⁴C-glucose and D-2-¹⁴C-glucose. They found very good agreement between the radioactivity of C-3 of apiose and C-4 of glucose. According to these results and in analogy with the biosynthesis of L-streptose from D-1,3-14C2-glucose [3], it was assumed that the rearrangement leading to apiose occurs with expulsion of C-3 of D-glucuronic acid [1, 4]. With the availability of an enzyme catalyzing the conversion of uridine diphospho-D-glucuronic acid (UDP-GlcUA) to uridine diphospho-D-apiose (UDP-Api) [5, 6] it was now possible to prove unequivocally the origin of C-3' of apiose with UDP-3-14C-GlcUA as substrate.

2. Materials and methods

2.1. Materials

D-3-¹⁴C-glucose ($10 \mu \text{Ci}/\mu \text{mole}$) was purchased from New England Nuclear (Boston, Mass., USA). The supplied solution was evaporated to dryness *in vacuo* and the residue was dissolved in an appropriate volume of distilled water.

2.2. Separation and analysis

Schleicher-Schüll paper No. 2043 b was used for chromatography. UDP-GlcUA was separated from incubation mixtures by chromatography with 95% ethanol—1 M ammonium acetate, pH 7.5 (5:2, v/v) [8]. Apiin was separated from incubation mixtures by chromatography with 15% aqueous acetic acid and paper which had been previously washed with 0.01 M EDTA, pH 7.0, and then with distilled water.

High-voltage paper electrophoresis used for the purification of UDP-GlcUA was carried out at 2000—2500 V for 50—60 min with a Pherograph Frankfurt (Hormuth u. Vetter, Wiesloch, Germany) on 30 × 40 cm sheets of Macherey-Nagel paper No. 214 wetted with 0.15 M triethylammonium acetate buffer, pH 4.4 [9]. The same buffer was used in the electrolyte vessels.

Radioactivity measurements were made with a Packard Tri-Carb Model 3375 liquid scintillation spectrometer. The samples were counted after dissolving in 20 ml of a solution consisting of 0.5% 2, 5-diphenyloxazole (PPO) and 10% naphthalene in dioxane. Corrections for counting efficiency were made through the use of standard ¹⁴C-n-hexadecane as an internal standard.

2.3. Preparation of enzymes

UDP-apiose synthetase was prepared from extracts of cell-suspension cultures of parsley and purified up to the Sephadex G-200 step [6].

UDP-apiose:7-glucosylapigenin apiosyl transferase

Table 1
Periodate oxidation of apiin obtained from UDP-3-¹⁴C-glucuronic acid by the combined action of UDP-apiose synthetase and UDP-apiose transferase,

Compound	Radioactivity (dpm)	Percent of apiin
Apiin		
1st crystallization	10,120	
2nd crystallization	10,620	
3rd crystallization	8,976	
Formaldehyde-dimedone from 3rd apiin crystal- lization		
1st crystallization	8,702*	96
2nd crystallization	9,024*	101

^{*} Corrected for dilution with carrier and to 100% yield. Actual yield of HCHO-dimedone derivative was 80% of theory.

was prepared from cell cultures of parsley and purified up to the Sephadex G-100 step [10].

2.4. Preparation of UDP-D-3-14C-GlcUA

UDP-D-3-¹⁴C-GlcUA was produced enzymatically from D-3-¹⁴C-glucose (5 μ Ci) through the combined action of hexokinase, phosphoglucomutase, UDPG pyrophosphorylase, and UDPG dehydrogenase as described earlier [7]. The yield of UDP-D-3-¹⁴C-GlcUA, as calculated from NAD⁺ reduction, was 62.5% after 135 min of incubation. The incubation mixture was treated with alkaline phosphatase and the UDP-D-3-¹⁴C-GlcUA purified alternately by paper chromatography and paper electrophoresis [7].

3. Results and discussion

UDP-3-¹⁴C-GlcUA was incubated with the enzyme from cell-suspension cultures of parsley which had been purified up to the Sephadex G-200 step [6]. In order to obtain an apiose derivative which was reasonably stable and which could be produced without passing through the aidehydo form, apiose from UPD-Api was then transferred to 7-O-(β -glucosyl)-apigenin with a transferase preparation from parsley cell cultures [7, 10]. The product of this reaction, apiin (7-0-[β -D-apiofuranosyl-($1\rightarrow 2$)- β -D-glucosyl]-5, 7, 4'-trihydroxy-flavone) was diluted with carrier apiin and recrystallized from ethanol to constant specific activity. The labeled apiin was then oxidized with periodate in

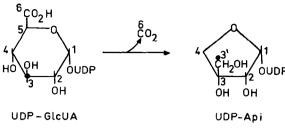


Fig. 1.

sodium bicarbonate solution [1] and the formaldehyde originating from C-3' of apiose trapped as dimedone derivative. The table shows the ¹⁴C activities in apiin and the formaldehyde-dimedone derivative. All radioactivity is located, within the limits of experimental error, at C-3' of apiose. This proves without doubt the origin of the branch hydroxymethyl carbon of D-apiose from C-3 of D-glucuronic acid. This result further underlines the similarity in the rearrangement of the sugar chain leading to L-streptose [3] and D-apiose.

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft, by Fonds der Chemischen Industrie, and by the University of Connecticut Research Foundation.

References

- [1] H. Grisebach and U. Döbereiner, Biochem. Biophys. Res. Commun. 17 (1964) 737; Z. Naturforsch. 21 b (1966) 429.
- [2] E. Beck and O. Kandler, Z. Pflanzenphysiol. 55 (1966) 71.
- [3] D.J. Candy and J. Baddiley, Biochem. J. 96 (1965) 526.
- [4] H. Grisebach and H. Sandermann, Biochem. Z. 346 (1966) 322.
- [5] E. Wellmann and H. Grisebach, Biochim. Biophys. Acta 235 (1971) 389.
- [6] D. Baron, E. Wellmann and H. Grisebach, Biochim. Biophys. Acta 258 (1972) 310.
- [7] W.J. Kelleher and H. Grisebach, European J. Biochem. 23 (1971) 136.
- [8] K.C. Tovey and R.M. Roberts, J. Chromatogr. 47 (1970) 287.
- [9] J.A. Thomas, K.K. Schlender and J. Larner, Anal. Biochem, 25 (1968) 486.
- [10] H. Grisebach and R. Ortmann, in: Methods of Enzymology, eds. S.P. Colowick and N.O. Kaplan (Academic Press) in press.